Hierarchical Kronecker tensor-product approximations

نویسندگان

  • Wolfgang Hackbusch
  • Boris N. Khoromskij
  • Eugene E. Tyrtyshnikov
چکیده

The goal of this work is the presentation of some new formats which are useful for the approximation of (large and dense) matrices related to certain classes of functions and nonlocal (integral, integrodifferential) operators, especially for high-dimensional problems. These new formats elaborate on a sum of few terms of Kronecker products of smaller-sized matrices (cf. [37, 38]). In addition to this we need that the Kronecker factors possess a certain data-sparse structure. Depending on the construction of the Kronecker factors we are led to so-called “profile-low-rank matrices” or hierarchical matrices (cf. [18, 19]). We give a proof for the existence of such formats and expound a gainful combination of the Kronecker-tensor-product structure and the arithmetic for hierarchical matrices. AMS Subject Classification: 65F50, 65F30, 65N38, 65N35, 15A09

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kronecker Product Approximation for Three-Dimensional Imaging Applications

Kronecker product and tensor decompositions are used to construct approximations of severely ill-conditioned matrices that arise in three-dimensional image processing applications. Computa-tionally efficient methods to construct the approximations are developed by exploiting structure that is inherent in many image processing problems, such as those arising in microscopy and medical imaging. It...

متن کامل

Distance-based topological indices of tensor product of graphs

Let G and H be connected graphs. The tensor product G + H is a graph with vertex set V(G+H) = V (G) X V(H) and edge set E(G + H) ={(a , b)(x , y)| ax ∈ E(G) & by ∈ E(H)}. The graph H is called the strongly triangular if for every vertex u and v there exists a vertex w adjacent to both of them. In this article the tensor product of G + H under some distancebased topological indices are investiga...

متن کامل

Structured data-sparse approximation to high order tensors arising from the deterministic Boltzmann equation

We develop efficient data-sparse representations to a class of high order tensors via a block many-fold Kronecker product decomposition. Such a decomposition is based on low separation-rank approximations of the corresponding multivariate generating function. We combine the Sinc interpolation and a quadrature-based approximation with hierarchically organised block tensor-product formats. Differ...

متن کامل

A constructive arbitrary-degree Kronecker product decomposition of tensors

We propose the tensor Kronecker product singular value decomposition (TKPSVD) that decomposes a real k-way tensor A into a linear combination of tensor Kronecker products with an arbitrary number of d factors A = ∑R j=1 σj A (d) j ⊗ · · · ⊗ A (1) j . We generalize the matrix Kronecker product to tensors such that each factor A j in the TKPSVD is a k-way tensor. The algorithm relies on reshaping...

متن کامل

Kronecker product/Direct product/Tensor product in Quantum Theory

The properties and applications of kronecker product in quantum theory is studied thoroughly. The use of kronecker product in quantum information theory to get the exact spin Hamiltonian is given. The proof of non-commutativity of matrices, when kronecker product is used between them is given. It is shown that the non-commutative matrices after kronecker product are similar or they are similar ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Num. Math.

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2005